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Phase Separation in Asymmetrical Fermion Superfluids
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Motivated by recent developments on cold atom traps and high density QCD we consider fermionic
systems composed of two particle species with different densities. We argue that a mixed phase
composed of normal and superfluid components is the energetically favored ground state. We suggest
how this phase separation can be used as a probe of fermion superfluidity in atomic traps.
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The recent interest in two physical systems has revived
the study of asymmetric fermionic systems, that is,
systems with unequal number density (or chemical po-
tential) for the different species. In high density strongly
interacting systems, as it may be found at the core of
‘‘neutron’’ stars, the different quark flavors have different
chemical potentials because of their different masses and
charges [1–4]. Atomic traps can also provide an example
of similar systems if a bias can be introduced when the
trap is filled in order to have a larger number of one of the
atom species (or hyperfine state of the same atom) [5]. In
the symmetrical situation the low energy properties of
these systems are dominated by Cooper pair formation.
Since it involves the attraction between two fermions with
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equal and opposite momenta at the their Fermi surface
one could imagine that as the Fermi surfaces move apart
with increasing asymmetry, the pairing would become
weaker and the gap smaller, until superfluidity disappears.
What actually happens, the formation of an inhomoge-
neous mixed phase state, is however more interesting and
results from the competition between states with different
particle distribution, both in momentum and real space.

Our discussion is valid in a wider class of models but,
for definiteness, let us consider a nonrelativistic dilute gas
made out of two particle species A and B with chemical
potentials �A, �B and masses MA, MB, respectively. At
low densities the details of the potential are not probed
and their interaction is well described by the pairing
Hamiltonian
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X
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where  y
A;  A are creation and annihilation operators for the A particles and 
Ak is their dispersion relation, that we take

to be 
Ak � k2=2MA ��A (and similarly for B). In the mean field approximation, adequate for the low densities
considered here, the Hamiltonian can be approximated by
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It is straightforward to minimize the diagonalized
Hamiltonian shown in Eq. (2). One simply fills the modes
with negative E�;�k and leaves the remaining modes
empty.
In terms of the original particles A and B and the
vacuum state j0i, the state above corresponds to having
a BCS-like state 	uk � vk 

y
A�k� 

y
B��k�
j0i in the modes k

where E�;�k > 0, but a state filled with particle B (A) in
the modes where E�k < 0 (E�k < 0). The thermodynamic
potential of this state is
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FIG. 1. Thermodynamic potential for different values of pB
and pA (constant p0). The top curve corresponds to pA � pB
and the lower curves correspond to increasing values of
jp2
B � p2

Aj.
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where a is the scattering length between particle A and
B. It is related to the coupling constant (in dimen-
sional regularization) by 1=g � M=2	a with M �
MAMB=�MA �MB�, the reduced mass.

Let us now consider the case MB > MA , pB > pA,
where pi is the Fermi momentum defined by pi ���������������
2Mi�i

p
. For some values of �, E�k may be negative for

momenta k1 � k � k2 where
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while E�k is always positive.
We now discuss separately the cases where either the

chemical potentials or the densities of each species are
kept fixed.

Fixed chemical potentials.—In Fig. 1 we show the
thermodynamic potential as a function of � for different
values of pA and pB, keeping the combination p2

0=M �
p2
A=MA � p2

B=MB fixed, computed from a numerical
evaluation of Eq. (5). An analytical expression valid for
� � �A;B is available but it is not very enlightening.

For large enough �, k21;2 are not real, E�;�k is always
positive, and the thermodynamic potential is unchanged
from the pB � pA case. However, for �< �p2

B � p2
A�=

�4
��������������
MAMB

p
�, k21;2 are positive and the thermodynamic

potential can be lowered by filling the states between k1
and k2 with �-type quasiparticles. The � � 0 state, in
particular, has its thermodynamic potential lowered with
increasing p2

B � p2
A and at some point becomes smaller

than the previous minimum with � � �0 corresponding
to the BCS phase. The result is that, for fixed p0 and
increasing p2

B � p2
A, there is a first-order phase transition

between the superfluid and the normal state, as it has been
noticed in different physics contexts (see, for instance
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Refs. [6–9]). These results can be understood in very
simple physical terms. Suppose we start in the BCS phase
with �A � �B and increase pB. By absorbing one B
particle and eliminating one A the system on one hand
reduces its thermodynamic potential � due to the
��AnA ��BnB term but on the other hand it increases
� by destroying two pairs. This is energetically favorable
if, and only if, the difference in chemical potentials is
large enough (or the gap small enough). Until that point
the BCS state with equal number of particles remains the
ground state, unchanged despite the variations in chemi-
cal potential.

In addition to the stable (or metastable) normal and
BCS phases there is, for some values of the chemical
potentials �A and �B, an unstable phase (referred to
here as ‘‘Sarma state’’) corresponding to a maximum of
� as a function of � situated between the BCS minimum
�0 and the normal phase at � � 0 (first pointed out in
Ref. [10]). The combination of parameters necessary for
the existence of this phase can be found considering the
gap equation:
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where the BCS gap is given by 2�p2
0=M� �

exp	�	=�2p0jaj� � 2
 in the mean field approximation.
For small values of the gaps �0;�s � �A;�B the inte-
grals can be approximated and it is found that [10–12]
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The Sarma state gap is in the range 0 � �s � �0, where
the upper bound is set by the condition for the existence
of real values of k21;2. We then have
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B � p2
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2
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p � 2�0: (9)

The condition in Eq. (9), for fixed pA and pB, can thus
be seen as determining a window for the values of a
supporting the Sarma state [13]. Also notice that when
p2
B � p2

A reaches its largest value allowing for a Sarma
state (p2

B � p2
A � 4

��������������
MAMB

p
�0), k1 equals k2 and the dif-

ference in particle densities nB � nA approaches zero,
corresponding to a BCS state. In the other limit, p2

B �
p2
A � 2

��������������
MAMB

p
�0, the gap �s vanishes and the Sarma

state reduces to the normal phase.
Fixed particle number.—The previous discussion re-

garding the stability of different phases was made under
the assumption that the particle numbers nA and nB are
allowed to change. We discuss now the situation where
they are fixed. In the BCS phase the particle number
densities nA and nB are the same, as can be readily seen
by taking derivatives of Eq. (5) in relation to �A and �B,
while the particle numbers in the normal phase can be
247002-2



P H Y S I C A L R E V I E W L E T T E R S week ending
12 DECEMBER 2003VOLUME 91, NUMBER 24
different. The Sarma phase can also accommodate nA �

nB so the question arises: What is the ground state of the
system when the particle densities are fixed and different
from each other? This question has been revived in
Refs. [13,14] where it was argued that the Sarma phase
(named there ‘‘interior gap’’’ state) could be the ground
state in the case of fixed particle numbers nA, nB. This
state would have fascinating properties, being at the same
247002-3
time a Fermi liquid (with two Fermi surfaces correspond-
ing to k1 and k2) and a superfluid.

The question can be answered by finding the state with
the smallest energy (not the thermodynamic potential �).
We compare here the normal, Sarma, and a mixed in-
homogeneous phase composed of bubbles of normal
phase in a sea of the BCS phase. The energy for the
normal and the BCS phase is, for small values of the
gap, given by
EN�nA; nB� �
�6	2nA�

5=3

20	2MA
�

�6	2nB�
5=3

20	2MB
; EBCS�nA � nB � n� �

�6	2n�5=3

20	2M
�
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0�n�

2	2 �6	2n�1=3: (10)

A similar expression can be derived for the energy of the Sarma phase but its form is not very enlightening and it will
not be needed below.

The mixed phase is an inhomogeneous phase where a fraction x of the space is in the normal phase with A and B
particle densities equal to �nnA and �nnB, while the remaining 1� x fraction is in the BCS phase with a common density for
both species equal to �nn. The densities in each component are adjusted in such a way that the overall average densities
have given prescribed values nA; nB; that is, nA � x �nnA � �1� x� �nn and similarly for the particles B. The most favored
mixed state for given nA; nB is the one with the smallest energy:

Emix�nA; nB� � min
x; �nn
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x
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�
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We have disregarded the interface energy between the two components, as those are small for large enough systems.
There are two limiting cases where the comparison between the mixed and Sarma phases can be done analytically,

corresponding to parameters where the inequalities in Eq. (9) are saturated. If p2
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where �n � nB � nA is assumed to be small, �n� nA.
An upper bound on Emix � ES can be obtained by

setting the density of the BCS component of the mixed
phase �nn � nA and minimizing in relation of x. We have
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whose minimization yields
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Numerical calculations show that the upper bound above
is close to the actual minimum. Notice that xmin �������������������������������������
�MA �MB�=2MB

p
< 1 as it should be. Equation (13)

shows that the mixed phase is energetically favored com-
pared to the Sarma phase in one extreme of the window
in Eq. (9).

The other simple limit to analyze corresponds to p2
B �

p2
A � 4

��������������
MAMB

p
�0, in which case �s � �0, k1 � k2,
nA � nB, and the Sarma phase reduces to the BCS phase.
In this case the mixed phase reduces to the BCS phase too
and the energies of both the Sarma and mixed phase are
equal to each other. For intermediate values of p2

B � p2
A

[still satisfying the constraint in Eq. (9)], the difference
Emix � ES interpolates between these two extremes, as
Fig. 2 exemplifies. We find that for all reasonable values of
the parameters (that is, where the mean field analysis
should apply), and for fixed particle numbers nA and nB,
the mixed phase has a smaller energy than the Sarma
phase.

Fixed total density.—Another interesting situation
arises when the total number of particles is fixed, but
conversions between particles of types A and B are
allowed. This is relevant for the physics of high
density quark matter where weak interactions can
change the flavor of the quarks. In this situation n �
nA � nB and �� � ��B ��A�=2 are fixed and the
thermodynamic function that should be minimized is
E� ���nB � nA�. The nonrelativistic formulation pre-
sented here is more appropriate for cold atoms.
In cold atom traps, only species with nearly equal
masses can convert into one another. Further, we con-
sider �� � 0 which is relevent for cold atoms for
convenience. It is straightforward to see, then, that the
condition for the existence of Sarma state Eq. (9) is not
247002-3



FIG. 2 (color online). Left: Energy of the Sarma (dashed curve) and mixed phase (solid curve) relative to the normal phase as a
function of �n=n where n � �nA � nB�=2 with MB � 7MA. The values of nA and nB were obtained from the Sarma phase for a fixed
a, and jajpA � 0:59, 0:63 � jajpB � 0:65. Right: The fraction of normal state x as a function of �n=n with the same masses and
scattering length.
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satisfied. The same also holds when �� � 0 and MB � MA. The composition in the mixed phase is
easy to calculate when �� � 0. The most favored composition minimizes

E�N � nA � nB� � Minx; �nn

	
�1� x�EBCS� �nn� �

�6	2�5=3

20	2x2=3
	n� 2�1� x� �nn
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�M3=2
A �M3=2

B �2=3



: (15)
When MA � MB, BCS (with x � 0) is the favored state
and when MB � MA normal phase (x � 1) with only
particles of species B is favored.

We have considered Fermi gases made up of two spe-
cies, when an asymmetry on their densities or chemical
potentials tries to push their Fermi surfaces apart, mak-
ing pairing more difficult. We find that with either both
chemical potentials or both densities fixed, the most
likely ground state is a mixed phase composed of bubbles
of an asymmetric normal state immersed in a sea of the
symmetric BCS phase. It is worth mentioning that the
Larkin-Ovchinnikov-Fulde-Ferrel (LOFF) state [15] (in
which the condensate varies in space) has lower free
energy than the normal and the BCS states. However,
the LOFF state can exist only in a very narrow window
of asymmetry for the chemical potentials and we ignored
this posibility in our discussion.

The space segregation of the excess particles in the
mixed phase suggests a possible way of detecting super-
fluidity in atomic traps, especially where large gaps are
expected as in the case of ‘‘resonance superfluidity’’ [16].
If an optical trap can be filled with an excess number of
one of the hyperfine states, the resulting ground state can
be imaged in a way that discriminates between them and
the bubble structure may become visible. A high concen-
tration of the denser particle species will accumulate at
some point(s) in the trap. The division of the space
between the BCS and the normal components is deter-
mined by the value of the gap thus, by studying its
variation with the variation of the asymmetry, we can
infer the existence of superfluidity and even the value of
the gap, which is currently an outstanding problem. A
better understanding of the surface tension of the inter-
face between the two components is necessary to make
this proposal fully quantitative. The qualitative argu-
ments discussed above should be valid even if weak
247002-4
coupling BCS theory is not, as is the case in the experi-
ments with 6Li [16].
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